skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaschner, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We find sufficient conditions for a self-map of the unit ball to converge uniformly under iteration to a fixed point or idempotent on the entire ball. Using these tools, we establish spectral containments for weighted composition operators on Hardy and Bergman spaces of the ball. When the compositional symbol is in the Schur–Agler class, we establish the spectral radii of these weighted composition operators. 
    more » « less
  2. Abstract Previously, spectra of certain weighted composition operators W ѱ, φ on H 2 were determined under one of two hypotheses: either φ converges under iteration to the Denjoy-Wolff point uniformly on all of 𝔻 rather than simply on compact subsets, or φ is “essentially linear fractional.” We show that if φ is a quadratic self-map of 𝔻 of parabolic type, then the spectrum of W ѱ, φ can be found when these maps exhibit both of the aforementioned properties, and we determine which symbols do so. 
    more » « less